3 #r = relative Luftfeuchte
\r
5 #TK = Temperatur in Kelvin (TK = T + 273.15)
\r
6 #TD = Taupunkttemperatur in C
\r
7 #DD = Dampfdruck in hPa
\r
8 #SDD = Saettigungsdampfdruck in hPa
\r
11 #a = 7.5, b = 237.3 fuer T >= 0
\r
12 #a = 7.6, b = 240.7 fuer T < 0 ueber Wasser (Taupunkt)
\r
13 #a = 9.5, b = 265.5 fuer T < 0 ueber Eis (Frostpunkt)
\r
15 Rs = 8314.3 #J/(kmol*K) (universelle Gaskonstante)
\r
16 mw = 18.016 #kg/kmol (Molekulargewicht des Wasserdampfes)
\r
17 #AF = absolute Feuchte in g Wasserdampf pro m3 Luft
\r
21 # SDD(T) = 6.1078 * 10^((a*T)/(b+T))
\r
22 # DD(r,T) = r/100 * SDD(T)
\r
23 # r(T,TD) = 100 * SDD(TD) / SDD(T)
\r
24 # TD(r,T) = b*v/(a-v) mit v(r,T) = log10(DD(r,T)/6.1078)
\r
25 # AF(r,TK) = 10^5 * mw/R* * DD(r,T)/TK; AF(TD,TK) = 10^5 * mw/R* * SDD(TD)/TK
\r
31 #a=r/100.0*SDD(T)/(T+273.15)*mw/Rs*10000
\r
32 #r=a*100/(SDD(T)/(T+273.15)*mw/Rs*10000)
\r
35 return 6.1078 * 10**((a*T)/(b+T))
\r
38 # return r/100 * SDD(T)
\r
41 # return 100 * SDD(TD) / SDD(T)
\r
44 # return math.log10(DD(r,T)/6.1078)
\r
47 # return b*v/(a-_v(r,T))
\r
51 # return 10000 * mw/Rs * DD(r,T)/(T+273.15) #; AF(TD,TK) = 10^5 * mw/R* * SDD(TD)/TK
\r
54 return r/100.0*SDD(T)/(T+273.15)*mw/Rs*10000
\r
57 return a*100/(SDD(T)/(T+273.15)*mw/Rs*10000)
\r
58 #print(0.5*SDD(20)/(20+273.15)*mw/Rs*10000)
\r
64 r.append((i*10)-RF1(AF1(i*10,j*10),j*10+0.5))
\r
65 s=s+"%0.2f\t" % (r[len(r)-1])
\r
72 s=s+"%0.4f\t" % (d[i][j]-d[i][j+1])
\r