DS2423 FHEM LEDs
[owSlave2.git] / DS2423_DS2423 / DS2423_DS2423.c
1 // Copyright (c) 2017, Tobias Mueller tm(at)tm3d.de\r
2 // All rights reserved.\r
3 //\r
4 // Redistribution and use in source and binary forms, with or without\r
5 // modification, are permitted provided that the following conditions are\r
6 // met:\r
7 //\r
8 //  * Redistributions of source code must retain the above copyright\r
9 //    notice, this list of conditions and the following disclaimer.\r
10 //  * Redistributions in binary form must reproduce the above copyright\r
11 //    notice, this list of conditions and the following disclaimer in the\r
12 //    documentation and/or other materials provided with the\r
13 //    distribution.\r
14 //  * All advertising materials mentioning features or use of this\r
15 //    software must display the following acknowledgment: This product\r
16 //    includes software developed by tm3d.de and its contributors.\r
17 //  * Neither the name of tm3d.de nor the names of its contributors may\r
18 //    be used to endorse or promote products derived from this software\r
19 //    without specific prior written permission.\r
20 //\r
21 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS\r
22 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT\r
23 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR\r
24 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT\r
25 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,\r
26 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT\r
27 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,\r
28 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY\r
29 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT\r
30 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE\r
31 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.\r
32 \r
33 //!!!!!Max Program size 7551 Byte\r
34 #define _CPULLUP_\r
35 #define F_CPU 8000000UL\r
36 #include <avr/io.h>\r
37 #include <avr/interrupt.h>\r
38 #include <util/delay.h>\r
39 #include <avr/wdt.h>\r
40 #include <avr/sleep.h>\r
41 #include <avr/pgmspace.h>\r
42 \r
43 extern void OWINIT(void);\r
44 extern void EXTERN_SLEEP(void);\r
45 \r
46 //#define FHEM_PLATINE\r
47 \r
48 volatile uint8_t owid1[8]={0x1D, 0x40, 0xDA, 0x84, 0x00, 0x00, 0x05, 0xBD};/**/\r
49 volatile uint8_t owid2[8]={0x1D, 0x41, 0xDA, 0x84, 0x00, 0x00, 0x05, 0x8A};/**/\r
50 #if RAMEND>260 //defined(__AVR_ATtiny84__)   ||defined(__AVR_ATtiny84A__)\r
51 uint8_t config_info1[26]={9,13,9,13,9,13,9,13,0x02,19,19,19,19,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}; //+2 for CRC\r
52 uint8_t config_info2[26]={9,13,9,13,9,13,9,13,0x02,19,19,19,19,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}; //+2 for CRC\r
53 #endif\r
54 #if (owid>128)\r
55 #error "Variable not correct"\r
56 #endif\r
57 \r
58 extern uint8_t mode;\r
59 extern uint8_t gcontrol;\r
60 extern uint8_t reset_indicator;\r
61 \r
62 \r
63 \r
64 typedef union {\r
65         volatile uint8_t bytes[45];\r
66         struct {\r
67                 uint16_t addr;\r
68                 uint8_t status;\r
69                 uint8_t scratch[32];//3\r
70                 uint32_t counter;  //35\r
71                 uint32_t zero;   //39\r
72                 uint16_t crc;  //43\r
73         };\r
74 } counterpack_t;\r
75 counterpack_t pack1;\r
76 \r
77 //The Memory of both  Chips is the same, beause of the small memory of ATTiny44\r
78 #define pack2 pack1\r
79 \r
80 volatile uint8_t lastcps;\r
81 typedef union {\r
82         uint32_t c32[4];\r
83         uint8_t c8[16];\r
84 } counters_t;\r
85 \r
86 volatile counters_t counters1,counters2;\r
87 \r
88 \r
89 volatile uint8_t istat;\r
90 volatile uint8_t changefromeeprom;\r
91 \r
92 #if  defined(__AVR_ATtiny44__)  || defined(__AVR_ATtiny84__) ||defined(__AVR_ATtiny44A__)  || defined(__AVR_ATtiny84A__)\r
93 #define PCINT_VECTOR PCINT0_vect\r
94 #define PIN_REG PINA\r
95 #define PIN_DDR DDRA\r
96 \r
97 #ifdef FHEM_PLATINE\r
98 #define PIN_CH3 (1<<PINA2)\r
99 #define PIN_CH2 (1<<PINA1)\r
100 #define PIN_CH1 (1<<PINA4)\r
101 #define PIN_CH0 (1<<PINA3)\r
102 //LEDS\r#define LPIN_CH2 (1<<PINB0)\r#define LDD_CH2 DDRB\r#define LPORT_CH2 PORTB\r#define LPIN_CH3 (1<<PINA5)\r#define LDD_CH3 DDRA\r#define LPORT_CH3 PORTA\r#define LPIN_CH0 (1<<PINA7)\r#define LDD_CH0 DDRA\r#define LPORT_CH0 PORTA\r#define LPIN_CH1 (1<<PINB1)\r#define LDD_CH1 DDRB\r#define LPORT_CH1 PORTB\r
103 \r
104 #define LED2_ON LPORT_CH2|=LPIN_CH2;\r
105 #else\r
106 #define LED2_ON\r
107 #define PIN_CH2 (1<<PINA4)\r
108 #define PIN_CH3 (1<<PINA5)\r
109 #define PIN_CH0 (1<<PINA6)\r
110 #define PIN_CH1 (1<<PINA7)\r
111 #endif\r
112 \r
113 #define TEST_TIMER  ((TIMSK0 & (1<<TOIE0))==0)\r
114 \r
115 #endif\r
116 \r
117 \r
118 ISR(PCINT0_vect) {\r
119         if (((PIN_REG&PIN_CH2)==0)&&((istat&PIN_CH2)==PIN_CH2)) {       counters1.c32[2]++;LED2_ON}\r
120         if (((PIN_REG&PIN_CH3)==0)&&((istat&PIN_CH3)==PIN_CH3)) {       counters1.c32[3]++;     LED2_ON}\r
121         if (((PIN_REG&PIN_CH0)==0)&&((istat&PIN_CH0)==PIN_CH0)) {       counters2.c32[2]++;     LED2_ON}\r
122         if (((PIN_REG&PIN_CH1)==0)&&((istat&PIN_CH1)==PIN_CH1)) {       counters2.c32[3]++;     LED2_ON}\r
123         \r
124         //Reset Switch on the FHEM_BOARD\r
125         #ifdef FHEM_PLATINE  //clear counter\r
126         if ((((PINA&(1<<PINA6)))==0)&&((istat&(1<<PINA6))==(1<<PINA6)))   {\r            _delay_ms(100);\r                if (((PINA&(1<<PINA6)))==0) {\r                  LPORT_CH3|=LPIN_CH3;\r                   _delay_ms(100);\r                        counters1.c32[2]=0;\r                    counters1.c32[3]=0;\r                    counters2.c32[2]=0;\r                    counters2.c32[3]=0;\r                    //counters1.c32[0]=0;\r                  //counters1.c32[1]=0;\r                  //counters2.c32[0]=0;\r                  //counters2.c32[1]=0;\r                  //count Resets\r                 counters1.c32[0]++;\r                    counters2.c32[0]++;\r                    LPORT_CH3&=~LPIN_CH3;\r          }\r              GIFR|=(1<<PCIF0);\r      }\r      #endif\r istat=PIN_REG;\r
127         changefromeeprom=1;\r
128 \r
129 }\r
130 \r
131 \r
132 ISR(ANA_COMP_vect) {\r
133         if (changefromeeprom==0) return;\r
134         if ((ACSR&(1<<ACO))!=0) {\r
135                 _delay_ms(5);\r
136                 if ((ACSR&(1<<ACO))!=0) {\r
137                         //Count Savings\r
138                         counters1.c32[1]++;\r                    counters2.c32[1]=counters1.c32[1];\r                     CLKPR=0x80;//Switch to 4 MHz\r
139                         CLKPR=01;\r
140                         \r
141                         PORTB|=(1<<PINB1);\r
142                         EEARH=0;\r
143                         for(uint8_t i=0;i<16;i++) {\r
144                                 uint8_t addr=i;\r
145                                 while(EECR & (1<<EEPE));\r
146                                 EECR = (0<<EEPM1)|(0<<EEPM0);\r
147                                 EEARL = i;\r
148                                 EEDR = counters1.c8[addr];\r
149                                 EECR |= (1<<EEMPE);\r
150                                 EECR |= (1<<EEPE);\r
151                         }\r
152                         for(uint8_t i=16;i<32;i++) {\r
153                                 uint8_t addr=i-16;\r
154                                 while(EECR & (1<<EEPE));\r
155                                 EECR = (0<<EEPM1)|(0<<EEPM0);\r
156                                 EEARL = i;\r
157                                 EEDR = counters2.c8[addr];\r
158                                 EECR |= (1<<EEMPE);\r
159                                 EECR |= (1<<EEPE);\r
160                         }\r
161                         changefromeeprom=0;\r
162                         PORTB&=~(1<<PINB1);\r
163                         CLKPR=0x80;\r
164                         CLKPR=0;\r
165 #ifdef FHEM_PLATINE\r
166                         LPORT_CH1|=LPIN_CH1;\r
167 #endif\r
168                         GIFR|=(1<<INTF0);\r
169                 }\r
170         }\r
171         \r
172 }\r
173 \r
174 \r
175 int main(void){\r
176         #ifdef FHEM_PLATINE\r
177         PRR|=(1<<PRUSI);  //Switch off usi, dont switch of ADC cause Multiplexer is used for the correct AIN1 pin\r
178         #else\r
179         PRR|=(1<<PRUSI)|(1<<PRADC);  //Switch off usi and adc for save Power\r
180         #endif\r
181         OWINIT();\r
182         \r
183         pack1.zero=0;\r
184         pack2.zero=0;\r
185         counters1.c32[0]=0;\r
186         counters1.c32[2]=0;\r
187         counters1.c32[1]=0;\r
188         counters1.c32[3]=0;\r
189         counters2.c32[0]=0;\r
190         counters2.c32[2]=0;\r
191         counters2.c32[1]=0;\r
192         counters2.c32[3]=0;\r
193         changefromeeprom=1;\r
194         \r
195         #if  defined(__AVR_ATtiny44__)  || defined(__AVR_ATtiny84__) || defined(__AVR_ATtiny24A__)||defined(__AVR_ATtiny44A__)  || defined(__AVR_ATtiny84A__)\r
196 \r
197         PORTB|=0xFF-(1<<PINB2); //Make PullUp an all Pins but not OW_PIN\r
198         PORTA|=0xFF;\r
199 \r
200         #ifndef _CPULLUP_  // pullup\r
201         PORTA&=~(PIN_CH0|PIN_CH1);\r
202         PORTA&=~(PIN_CH2|PIN_CH3);\r
203         #endif\r
204 \r
205         #ifdef FHEM_PLATINE  //LEDs\r
206         LDD_CH0|=LPIN_CH0;\r     LPORT_CH0&=~LPIN_CH0;\r  LDD_CH1|=LPIN_CH1;\r     LPORT_CH1&=~LPIN_CH1;\r  LDD_CH2|=LPIN_CH2;\r     LPORT_CH2&=~LPIN_CH2;\r  LDD_CH3|=LPIN_CH3;\r     LPORT_CH3&=~LPIN_CH3;\r
207         #endif\r
208 \r
209         GIMSK|=(1<<PCIE0);\r
210         PCMSK0=(PIN_CH0|PIN_CH1|PIN_CH2|PIN_CH3); //Nicht ganz korrekt aber die Bits liegen gleich\r
211 \r
212         \r
213         \r
214         istat=PINA;\r
215         #endif\r
216 \r
217         EEARH=0;\r
218         uint8_t addr;\r
219         for(uint8_t i=0;i<16;i++) {\r
220                 addr=i;\r
221                 while(EECR & (1<<EEPE));\r
222                 EEARL=i;\r
223                 EECR |= (1<<EERE);\r
224                 counters1.c8[addr]=EEDR;\r
225         }\r
226         for(uint8_t i=16;i<32;i++) {\r
227                 addr=i-16;\r
228                 while(EECR & (1<<EEPE));\r
229                 EEARL=i;\r
230                 EECR |= (1<<EERE);\r
231                 counters2.c8[addr]=EEDR;\r
232         }\r
233         changefromeeprom=0;  //Daten neu eingelesen\r
234         for (uint8_t i=0;i<4;i++) {\r
235                 if (counters1.c32[i]==0xFFFFFFFF) {\r
236                         counters1.c32[i]=0;\r
237                         changefromeeprom=1;  //Daten geaendert\r
238                 }\r
239                 //counters.c32[i]=0;\r
240         }\r
241         for (uint8_t i=0;i<4;i++) {\r
242                 if (counters2.c32[i]==0xFFFFFFFF) {\r
243                         counters2.c32[i]=0;\r
244                         changefromeeprom=1;  //Daten geaendert\r
245                 }\r
246                 //counters.c32[i]=0;\r
247         }\r
248 \r
249         //ACSR|=(1<<ACD);  //Disable Comparator\r
250         ADCSRB|=(1<<ACME); //Disable Analog multiplexer\r
251         MCUCR &=~(1<<PUD); //All Pins Pullup...\r
252         #ifdef FHEM_PLATINE\r
253         DIDR0|=(1<<ADC0D);\r
254         PORTA&=~(1<<PINA0);//Disable Pullup\r
255         #else\r
256         DIDR0|=(1<<ADC2D)|(1<<ADC1D); // Disable Digital input on Analog AIN0/AIN1  (PINA1 / PINA2)\r
257         PORTA&=~(1<<PINA2); //AIN1\r
258         #endif\r
259         ACSR&=~(1<<ACD);\r
260         ACSR|=(1<<ACIE)|(1<<ACIS1)|(1<<ACIS0)|(1<<ACBG); //Enabble comperator interrupt Rising edge....(1<<ACIS0) -> minus of Comperator falls down -> output of Comperator rises\r
261         #ifdef FHEM_PLATINE\r
262         //Switch std AIN1 to A0\r
263         ADCSRA&=~(1<<ADEN);\r
264         ADCSRB=(1<<ACME);\r
265         ADMUX=0;\r
266         //Taster\r
267         DDRA&=~(1<<PINA6);\r     PCMSK0|=(1<<PCINT6);\r   PORTA|=(1<<PINA6); //Pullup\r
268 \r
269 \r
270         LPORT_CH0|=LPIN_CH0;\r   _delay_ms(500);\r        LPORT_CH0&=~LPIN_CH0;\r
271         #endif\r
272         sei();\r
273         while(1)   {\r
274                 #ifdef FHEM_PLATINE\r
275                 if (LPORT_CH2&LPIN_CH2) {\r                      _delay_ms(50);\r                 LPORT_CH2&=~LPIN_CH2;\r          }\r
276                 if (LPORT_CH1&LPIN_CH1) {\r                      _delay_ms(50);\r                 LPORT_CH1&=~LPIN_CH1;\r          }\r
277                 #endif\r
278                 #ifndef FHEM_PLATINE\r
279                 if ((PINB&(1<<PORTB0))==0) {  //Jumper gesetzt ->Ruecksetzen\r
280                         if ((counters1.c32[2]!=0)||(counters1.c32[3]!=0)||(counters2.c32[2]!=0)||(counters2.c32[3]!=0)) {\r
281                                 counters1.c32[0]++;\r                            counters2.c32[0]++;\r                            for (uint8_t i=2;i<4;i++) {\r
282                                         counters1.c32[i]=0;\r
283                                         counters2.c32[i]=0;\r
284                                 }\r
285                                 //count Resets\r                         changefromeeprom=1;\r
286                         }\r
287                 }\r
288                 #endif\r
289                 MCUCR|=(1<<SE);\r
290                 MCUCR&=~(1<<SM1);\r
291                 asm("SLEEP");\r
292         }\r
293 \r
294 \r
295 }\r